Haplogroup J (mtDNA)

Haplogroup J
Possible time of origin 45000 years before present
Possible place of origin Western Asia
Ancestor JT
Descendants J1, J2
Defining mutations 295 489 10398 12612 13708 16069[1]

In human mitochondrial genetics, Haplogroup J is a human mitochondrial DNA (mtDNA) haplogroup. Haplogroup J derives from the haplogroup JT, which also gave rise to Haplogroup T. In his popular book The Seven Daughters of Eve, Bryan Sykes named the originator of this mtDNA haplogroup Jasmine. Within the field of medical genetics, certain polymorphisms specific to haplogroup J have been associated with Leber's hereditary optic neuropathy.[2]

Contents


Origin

Around 45,000 years before present, a mutation took place in the DNA of a woman who lived in the Near East or Caucasus. Further mutations took place in the J line which can be identified as J1a1 (27,000 yrs ago), J2a (19,000 yrs ago), J2b2 (16,000 years ago), J2b3 (5,800 yrs ago), etc. Haplogroup J (along with ‘T’) is associated with the spread of farming and herding in Europe during the Neolithic Era (8,000-10,000 yrs ago). All other West Eurasian-origin groups (H, V, U, K, W, I, X) were previously given to hunting and gathering.

Coalescence time estimates for the subclades of mitochondrial haplogroup J
Subclade European coalescence time[2] Near East coalescence time[2]
J1a1 27,300 years (± 8,000 years) 17,700 years (± 2,500 years)
J1a2 7,700 years (± 3,500 years)
J1b 5,000 years (± 2,200 years) 23,300 years (± 4,300 years)
J2a 19,200 years(± 6,900 years)
J2b1 15,000 years (± 5000 years)
J2b2 161,600* years (± 8,100 years) 16,000 years (± 5,700 years)
J2b3 5,800 years (± 2,900 years)

*Typographical error from original source material as per time table describing the spread of populations given in the same study.

Distribution

Average frequency of J Haplogroup as a whole is highest in the Near East (12%) followed by Europe (11%), Caucasus (8%) and North Africa (6%). Of the two main sub-groups, J1 takes up four-fifths of the total and is spread on the continent while J2 is more localised around the Mediterranean, Greece, Italy/Sardinia and Spain. In Pakistan, where West Eurasian lineages occur at frequencies of up to 50% in some ethno-linguistic groups, J1 averages around 5%, while J2 occurrence is very rare. Intriguingly, however, it is found amongst 9% of Kalash, a small ethnic community dwelling in the Hindu Kush mountains of Pakistan.

Within Europe, >2% frequency distribution of mtDNA J is as follows:[3]

  • J* = Ireland — 12%, England-Wales — 11%, Scotland — 9%, Orkney — 8%, Germany — 7%, Russia (European) — 7%, Iceland — 7%, Austria-Switzerland — 5%, Finland-Estonia — 5%, Spain-Portugal — 4%, France-Italy — 3%
  • J1a = Austria-Switzerland — 3%
  • J1b1 = Scotland — 4%
  • J2 = France-Italy — 2%
  • J2a = Homogenously spread in Europe. Absent in the nations around the Caucasus. Not known to be found elsewhere.[2]
  • J2b1 = Virtually absent in Europe. Found in diverse forms in the Near East.[2]

Tree

This phylogenetic tree of haplogroup J subclades is based on the paper by Mannis van Oven and Manfred Kayser Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation[1] and subsequent published research.

Genetic traits

It has been theorized that the uncoupling of oxidative phosphorylation related to SNPs which define mt-haplogroup J consequently produces higher body heat in the phenotype of mtDNA J individuals. This has been linked to selective pressure for the presence of the haplogroup in northern Europe, particularly Norway.[4] J mtDNA has also been associated with HIV infected individuals displaying accelerated progression to AIDS and death.[5] The T150C mutation, which is exclusive to but not definitive of, the J2 subclade of Haplogroup J may be part of a likely nuclearly controlled general machinery regarding the remodeling & replication of mtDNA. Controlling a remodeling which could accelerate mtDNA replication thus compensating for oxidative damage in mtDNA as well as functional deterioration occurring with old age related to it.[6]

See also

Evolutionary tree of Human mitochondrial DNA (mtDNA) haplogroups
  Mitochondrial Eve (L)    
L0 L1 L2 L3   L4 L5 L6
  M N  
CZ D E G Q   A S   R   I W X Y
C Z B F R0   pre-JT P  U
HV JT K
H V J T

References

  1. a b van Oven, Mannis; Manfred Kayser (13 Oct 2008). . Human Mutation 30 (2): E386–94. . . http://www3.interscience.wiley.com/journal/121449735/abstract?CRETRY=1&SRETRY=0. 
  2. a b c d e Serk P. mtDNA Haplogroup J Thesis
  3. BioEvolution on UPF web site
  4. Different genetic components in the Norwegian population revealed by the analysis of mtDNA & Y chromosome polymorphisms
  5. Hendrickson SL, Hutcheson HB, Ruiz-Pesini E, et al. (November 2008). . AIDS 22 (18): 2429–39. . . . http://meta.wkhealth.com/pt/pt-core/template-journal/lwwgateway/media/landingpage.htm?issn=0269-9370&volume=22&issue=18&spage=2429. 
  6. A Comprehensive Analysis of mtDNA Haplogroup J (Jim Logan. September, 2008)